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ABSTRACT

This paper derives a model of diffuse and specular illumination in arbitrarily large dimensions,
based on a few characteristics of material and light in 3-space. It then describes how to adjust for
the anomaly of excess brightness in large codimensions. If a surface is grooved or furry, it can be

illuminated with a hybrid model that incorporates both the 1D geometry (the grooves or fur) and
the 2D geometry (the surface).
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1 Introduction

When a geometric object possesses a distinct (outward) unit normal at each point, the familiar
models of illumination can be applied to the object. When the object is in a large dimensional
space, the space of unit normals has two or more dimensions (that is, the codimension of the
object is at least two) and the illumination model must be extended; examples include curves in
3-space and 4-space, or surfaces in 4-space and higher.

This paper addresses the problem of applying light in large codimensions. Consider an object of
dimensionk>0 in Euclidean space of dimensiork. The differencen-k is thecodimensiorof

the object. Mathematicians use the téemanifoldto denote th&-dimensional generalization of
curves (1-manifolds) and surfaces (2-manifolds). Every neighborhoolwiamifold is homeo-
morphic with Euclideak-space.

Regarding codimension 1, popular texts on computer graphics [Foley90] [Rogers85] handle the
special case k=2 andn=3: these are ordinary surfaces in 3-space. Other authors [Carey87]
[Steiner87] have noted that whenever the codimension is 1, each point of a manifold can be natu-
rally assigned a normal vector. The usual lighting equations then prevail. (Special care is required
for non-orientable manifolds or manifolds with boundary, since their “frontfacing” elements are
not well defined.)

Regarding codimension 2, several authors have considered the kade o 3 for illuminating

fur [Kajiya85], hair [Anjyo92] [Miller88] [LeBlanc91] [Watanabe92], or anisotropic grooves on

a surface [Kajiya89] [Poulin90] [Westin92] [Ward92]. The cks@,n=4 has been studied in the
“Fourphront” system [Banks92] [Banks93] and also by Hanson [Hanson93] for examining a
variety of surfaces in 4-space. Kajiya and Hanson testify that this model is not based on physical
principles, calling it an “ad hoc” and “heuristic” result, respectively. But in fact the Kajiya-
Hanson model can be derived from a few physical principles. This is the subject of section 2.

In daily life one encounters illuminated surfaces everywhere. It is reasonable to believe that the
human visual system is especially well designed to infer shape from the shading of 2-dimensional
surfaces in 3-space [Horn89]. If surfaces in 3-space represent the ideal for visual comprehension,
the Kajiya-Hanson model suffers from peculiar drawback: manifolds are “too bright” when the
codimension grows larger. Section 3 explains the cause and presents a simple remedy to the
problem.

Kajiya noted the importance of global illumination effects (in the form of attenuation and
shadows) for rendering textured volume elements. Section 4 shows how the combination of a
manifold together with a vector field (like a surface together with fur) can be illuminated to simu-



late global effects. The technique can be incorporated into a simple object-order (e.g., polygon)
renderer.

2 The Model for Large Codimensions

The final results of this section will be equations for diffuse and specular illumination that are
equivalent to the results that Kajiya and Hanson have presented [Kajiya89] [Hanson93]. The new
contribution that this section offers is a physical motivation to the derivation. The conventional
motivation begins by promoting the dimension of a manifold, illuminating the promoted mani-
fold, and integrating. The new motivation dispenses with the promotion and integration steps
altogether. It proceeds directly from the geometry to the illumination solution, without regard to
the participating dimensions.

The following discussion makes heavy use of the tangent §pacel the normal spade¢ at a
point p on ak-manifoldM in n-space (see Figure 1). The spdcis the vector space tangent to a
point in M. It has dimensiok, matching that of the manifold. The spac&l is orthogonal tar
and has dimension(the codimension d1). The dimensions of andN add up to the dimension
n of the entire space, of course.

2.1 Conventional Motivation

The benefit of codimension 1 is that there exist only two unit normals in a point’'s 1-dimensional
normal space. The usual illumination equations require the modest choice of one of the two. If
the codimension is large, there is no clear way to select one unit normal from the infinitude that
are available. There is a clever solution that other authors have adopted: the dimension of the
manifold can be promoted to reduce the codimension.

Let SY(r) denote am-sphere of radius A circle of radius 10 is theB(10); a unit sphere (1),

or simplyS?. Kajiya, Hanson, and others have proposed that illuminatkagnanifold M of codi-
mensionc>1 can be accomplished after forming the cross-produd¥l afith (). It is

required that~!(r) lie within the normal spads. A point is thus promoted to a circle in 2-space

or to a sphere in 3-space; a curve is promoted to a tube in 3-space; a surface is promoted to a
volume in 4-space.

The advantage of promotilg to M’ = MDSC'l(r) is that the promoted manifold has codimension

1. This represents the simple case where the usual lighting equations prevail. The promoted
manifold M’ can provide an effective representationMbfwith no further processing. But to
renderM itself, one must employ a scheme whereby a gointM inherits the illumination of its
fiberpoSY(r) in M'. A reasonable way to accomplish that goal is to integrate the intensity of the
reflected light ovepDSC'l(r) and then to average it. The average intensity is obtained by dividing



the integrated intensity by the measure of the fiber as seen by the eye. This measure can be a
length, an area, a volume, or so forth, in accordance with the dimensiasf the spher&(r)

(used in the cross product) over which the average is taken. The limit of the averagé), as

yields a reasonable intensity for the pgant

There are two drawbacks to this approach of promaddrtig M’, integrating, and then averaging.
First, the integration is unwieldy far>1, due to the specular term in the integrand. Second, the
projected measure & X(r) is view-dependent. This opposes the notion that diffuse reflection is
view-independent. For example, in derivation (13) of [Kajiya89], the integrated intensity over a
fiberpoSH(r) of M’ is calculated to be

diffuse= Kaf L "Ly [5 sin6 d@
= kg2rL-Ly

whereky is the diffuse coefficient, is the light vector, andly is the projection ot ontoN
(Figure 1). Under a parallel projection, the arclength of the circle can vary fr¢wefing the

tube from the side) tor (viewing the tube end-on). So the average intensity ranges between a
minimum of 2ftky L L and a maximum oy L [ according to the viewing angle. Kajiya
avoided this problem by treating the quankf2r/projectedArclength{ as a constant, giving a
diffuse quantity of

lgifuse = Kal "Ly
for a point on the original manifold.

2.2 Principles for Diffuse Reflection

One can, in fact, justify Kajiya’'s result by characterizing diffuse reflection in the following way.
A neighborhood of a poirg absorbs energy from the incoming light (which delivggg,ceper

unit cross section), and then it re-radiates a fradjaf the absorbed energy. How much energy

Figure 1. Light shines in direction at a pointp on a tubeL is the projection of the light onto the normal spaterhe diffuse
reflection is integrated over the visible portion of the cirdle S



does the beam deliver to a unit-neighborhoop?That depends on the cross section of the beam
and the angle it makes with the tangent plane (Figure 2).

Suppose an incident light beam strikdsatp. The light vectolL (pointing in the direction that

the beam propagates) projects orthogonally onto the tangent Bd@eto produce the vector

L+. The two vectors form an angé., L). Simple trigonometry shows that a unit neighborhood
of the tangent space intercepts a beam whose cross-section has meamurlam(that this
guantity is never negative, since a vector can be no more tfidgo@0the tangent space. The
manifold re-radiateky of the energy delivered by the beam’s cross-section. Thus the diffuse
component of reflection atis given by

(1) laitfuse = Kd IsourceSina(L, Lt).

This solution is essentially the same as Kajiya’s: the sine (measured abpiastl cosine
(measured against) are equal.

The principles for this result are (1) the re-radiated light's intensity varies with the energy deliv-
ered by the incident beam; and (2) the manifold re-radiates isotropically.

Equation () is purely local, neglecting any effects of shadowing (even self-shadowing). For a
closed surface in 3-space, it is common practice to clamp the diffuse term to zero when the
surface normal points away from the light source. This is best regarded as a “global” calculation.
A very thin surfacaloesre-radiate light both forward and backward, as the local model predicts.
Moreover, when the codimension is larger than 1, the unit normals form a connected set. In that
case there is no “front” or “back” side of the manifold. Local two-sidedness is an exclusive prop-
erty of codimension one.

2.3 Principles for Specular Reflection

The characteristic of a specular highlight is that it indicates locations on a manifold where the
angle between the reflection veck®iand the view vectov is zero. One can use an exponential
function to condense the reflected intensity into the region where this angle is small (Phong
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Figure 2. Light shines in directidn at a pointp. L1 is the projection of the light onto the tangent spaceéhe beam strikes a unit
neighborhood op at an angle a.



lighting). The only problem is how to determine an appropriate unit-length reflection ®ector
when the codimension exceeds 1: there are infinitely many to choose from.

A simple principle to invoke is that light, in a uniform medium, follows a path of (locally)
minimum length. To see how the principle applies to a ray of light reflecting from a tangent space
T, consider a point sourcgethat shines on the poiptand bounces to reach a painfFigure 3).

The segments from to p and fromp to u are straight-line paths, so individually they satisfy the
minimal-distance criterion.

The total distance must be a local minimum as well. If the points were all in a plane the problem
would be very easy: the angles(g p gr) andb=0(u p uy) must be identical, with the
tangent projectiongt andut lying on the opposite sides pf The actual situation is nearly this
simple. Ifu-p really is a reflection vector then a path frgnto u via a nearby poinp+sin T

must be longer than the path waThat immediately forcegt, p, andut to be collinear. To see

why, consider choosingoff of the lineu; q; . Ifp lies onu;q; then perturbing the path over to

p+s increases the base length of each triangle (by the Cauchy-Schwartz inequality), hence
increasing each hypotenuse, and hence increasing the total path-length. So the triangles
(Figure 3) lie in the planes)(u; q;) and (0 u;a;).

Now consider the situation whéxa. What happens whemis perturbed (in the ling, q; ) over
to somep+s(qt-ut)? The trigonometry is exactly the same as for the “easy” case of the plane.
The total distance @) is parametrized by.

D(s) = d(@, p+s(gr-uy)) + d(P+s(gr-ur), u)

A straightforward application of trigonometry and calculus demonstrates that the total distance is
a local minimum. One must simply verify th%t dp€ 0 whens=0. As a resulthb=a.

The unit vectord. andR consequently have identical tangent components, so the first require-
ment on a unit reflection vect® is thatRy=L. If the codimension is 1, there are two such
“reflection” vectorsR™ andR™; R* is the continuation of transmitted througi (for opaque
manifolds of codimension 1, this solution is ignored). When the codimension is 2, the set of all
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Figure 3. A ray of light emanates fragnstrikes the tangent spadeat p, and reflects ta. If the total path has minimum length,
angles a and b are equal.



reflection vectors forms a cone-shaped famiil{fFigure 4). The unit reflection vectors fraf
project to a circle in the normal spaseln general, the unit reflection vectors projecstd(r) in
N when the codimension ¢s

What is the angle between the view vectbland the spac& of reflections? It is the angle
betweenV and the closest vect® in R. This vector is easy to find. A unit reflectiBrcan be
expressed by its tangent and normal componatsLt andRy. The unit view vector can be
likewise decomposed inddt andVy.

The component¥+, Vy, andRy are all fixed, so the distance betwderandV is minimized
when [Ry-Vl| is minimized. That occurs whétandVy are collinearRy=AV) for some
scalarA. To see why this is minimal, recall that the ved®qyis also perpendicular to the point
Ry on the spheréc'1 in the normal space. It is a familiar result from calculus that if the distance
from a pointp (off of Sc'l) to a pointg (on §'1) is minimal, the vectop-q is perpendicular to
st

In particular, the reflectioR is found by requiring the normal component to be

Ry = R =

VN VN
NIy NIy

This alignsR with the projection of the view vector onto the normal space (Figure 3).The cosine
of the angle betweeR andV is easy to compute.
VIR = (Vr+VyURr+Ry)
= VT DRT + VN DRN

The inner terms of the expansion are zero because the tangent and normal spaces are orthogonal.
Substituting for the componerfgs andRy yields the specular term for large codimensions:

Figure 4. The light vectdr reflects off a tangent linE in 3-space, forming a cone of reflectighd-or a given view vectdy, the
closest unit reflectioR has a component in the normal spatevhich is aligned with/'s component lying iN.



VIR

Y%
VTD].T - VN E"LNHW

(2) VIR = Vgt = |Vl [kl

It is convenient to us¥ [R to denote the dot product betweéémnd the nearest unit vectorRn

Even when the codimension of the manifold is 1, equd#pignores which side of the manifold

is being illuminated, just like in the case of diffuse lighting (equatlo'wWhenV is more than

90° away from the reflection spa&ethe dot producV [R becomes negative. The fact that it can

be negative is unrelated to the codimension, and it is reasonable to clamp it to zero. The rationale
is that whenV [R is less than zerdy is so far from the reflection space that it receives no
reflected light at all.

The Phong model for calculating the specular intensity is therefore

3) Ispecular= Ks Isource(Clamp¥V [R)) power

where clampf)=0 whenx<0. The principles for specular illumination are thus (1) light travels in
paths of locally minimal length; and (2) the specular reflection is maximized exactly when the
view vector nears the reflection space.

This seems like a lot of effort to expend just to end up with the same equation used by Hanson
[Hanson93]. But the purpose of this derivation was not to replace the equations. The purpose was
to replace the descriptions “ad hoc” and “heuristic” by means of a physically-motivated deriva-
tion of the geometric behavior of light, arguing from principles independent of any particular
dimension.

3 Compensating For Large Codimensions

When the diffuse model is applied t&-aanifold inn-space, under different valueskondn, a

curious phenomenon occurs: the overall brightness increases with the codimension. Tite torus

is a convenient test object for demonstrating the effect. The surface can be imbedded in 4-space
as the cross-product of two circles by the parametrization

X, ¥, z, W = (ry cos, rqsind, r, cosy, r, Sing)

wherer, andr, are the “outer” and “inner” radii. One can wrap a curve aro‘l:?nby letting

@ d=A0 for some constanA. The curve or surface can be illuminated in 4-space, or else
projected t@3-space and then illuminated there. lllustration 1 shows the result. Notice, especially,
how uniformly bright the cade=1,n=4is.






In order to understand this phenomenon, first suppose there are light sources uniformly distrib-
uted in all directions. How bright is a poipton the surface or the curve? The answer requires
integrating the illumination term over all directions of incoming light-Bpace, these directions
cover the unitr§-1)-sphere.

3.1 Surface in 3-space

To integrate the uniform illumination of a point on a surface, let the tangent $pheethe
xz-plane and let the light vectors fill a unit sphere. The spﬂ??ei‘es the following parametriza-
tion and area elemensd

(X,¥,2 = (sinpcos, singsinb, cosy)
dS? = |sing| dpdo

The total aread\(S) of the sphere is® The area-averaged diffuse illuminatibfr 3 atp (with
k=2,n=3) is given by
12,32

1 .
LKyl sina(L, L) d<
A(Sz) kd sourceL 'D[SZ ( T)
The constant&y and g, ceWill clutter the ensuing calculations; it is convenient to just ignore
them (by assuming they are both equal to 1, say). The rest of the computations follow this conven-
tion.
Evaluating the integral requires finding an expression fom.slh is easier to first find
cosza(L, Lt) =L Ly / |+l by using the dot product.llf= (X, y, 2) thenLt = (X, 0, 2). The sine
can be computed from the cosine as follows.

coga(l, Lt) =1 - sirf0 sirfg

The total illumination for a point on a surface is therefore

T 27
[ [ lsin® sing| |singl d do= 2

»=0 6=0

123 =1
4mn
3.2 Curve in 3-space

Compare the value? 3to the average illumination of a point on a 1-dimensional curve whose
tangent lies in the (0, 0, 1)-direction. The area-averaged illuminiaticiis given by the integral

| 1.3=_1_ sina(L, L1) d?
A(SZ)L£§ (L,Ly)



The light's tangent component is; = (0, 0,2), so the sine can be easily calculated from the
cosine.

cosa(L, L) = |cosp|

sina(L, L1) = [sing|

The total illumination for a point on a curve is therefore

m 271

|13 == [ [ Ising| |sing| cB dg
©=0 6=0
2 21
== 27 g sifodd dp="7 =~ 0.785
©=0 6=0

The point is nearly 60% brighter just because the curve has a lower dimension than the surface.

m 271

L3 =2 [ [ Isingl |sing| cB dp
@=0 6=0
w2 21
== 20 sifode dp="1 ~ 0.785
@=0 6=0

3.3 Curve in 4-space
If the curve is in 4-space, the point becomes brighter still. The 3-sphéras the following
parametrization and volume element.

(X, ¥, z, W = (sinx sing cosd, siny sin@ sinb, siny cosyp, Cosx)
dS® = |sing sinfx| d® dep dx

The total “surface areaA(S3) of the 3-sphere ist?. If the tangent is aligned with the (0, 0O, 0, 1)
direction, the uniformly-lit poinp has an area-averaged intensity which is calculated as follows.

L4 =_1 J'sina(L,LT)dS3

A(Sg) Los
R 2n|sin)(| |sinp sirfx| dBdpdy = £ ~ 0.849
2T[2 X‘[O(pj;oelo sm -

Similar calculations show thath? = 2/fm = 0.673 (a curve illuminated in 2-space), and that
124=2/3= 0.667 (a surface illuminated in 4-space).
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3.4 Exponentiating the Sine

Why does the average intensity increase with the codimension? Congidearafold in x+1

space. For most light vectots the k+1)-dimensional normal space is closerLtahan the
smallerk-dimensional tangent space is. Light vectors that are in, or near, the normal space make a
point look bright, so most light vectors reflect brightly when the codimension is large.

It is not enough simply to adjust the diffuse coefficignto compensate for the codimension.
Consider what it means for the average illumination to approach the limit of 1: the integrand is
bounded above by 1, so it must in fact attain that bound almost everywhere. In almost every
direction that light shines, it brightly illuminates almost all of the manifold.

Probably no one is very interested in illuminating a flat object using infinitely many point-light
sources distributed uniformly in all directions. The typical situation is complementary to it: there
may be a single light source, but the manifold’s tangents vary continuously over many (if not all)
directions. The visual result is generally the same as the theory predicts: a manifold becomes
more uniformly bright when its codimension increases.

A simple way to increase the contrast is to exponentiate using a p¢kyer) This exponent
compensates for the surfeit of diffuse reflection. By modifying the diffuse term to be

(5) lcomp = K |source5inp(k’ n)a(L’ L)

the brightness is balanced so th&traanifold inn-space approximates the contrast displayed by

a surface in 3-space. The only difficulty is in choosing a suitable value of the exp@gentlt

is natural to choose a standardpg2, 3) =1 since surface-shading in 3-space is the paragon of
visual comprehension. For other valueg ahdn, one proceeds by comparing the averaged inte-
grated intensitie$® " to the averaged integrated intensitiés® under the new compensating
model of equatiorfs), finding a value op(k, n)that makes them equal. The integration is some-
what laborious even for low dimensions, so it is relegated to the appendix. The results are
summarized in Table 1, and are applied in lllustration 2.

n=2 n=3 n=4
k=1 p=2 p=4.7635 p=7.6737
k=2 p=1 p=2

Table 1. Values of the power p used by equation (5) for compensated diffuse illumination of a k-manifold in n-space.
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4 Mixing Dimensions

This section describes how the large-codimension model for illumination (equhaoK?) can

be used to render anisotropic reflectors and furry surfaces. These two examples exhibit a mix of
diverse codimensions: 1-dimensional grooves on a 2D surface, or 1-dimensional fibers

protruding from a 2D surface. The solution presented here applies to other combinations of codi-
mensions as well.

A manifold may be supplied with one or more vector fields. For example, an isosurface of
constant pressure in a fluid flow might possess 1D velocity vectors at every point together with a
2D tangent plane. If vector spaces of different dimensions are associated with a point, one is free
to select which space will participate in the lighting calculation. In the case of the pressure-
surface, the tangent space reflects like a 2-manifold, whereas the velocity field reflects like a
1-manifold at each sample point.

4.1 Inheritance of Self-shadowing

Section 2.2 noted that a manifold of codimension 1 enjoys the special property of possessing, at
most, two sides. The local illumination model can thus simulate the “global” effect of self-shad-
owing. Consider a surfadd with a 2D tangent spacke and a 1D vector field/ in 3-space. A

pointp in M is in shadow if its outward normal aims away from the light source. With the light
vector directed away from the souredy[LL is negative for a self-shadowed point. Assigning a
unigue normal vector is only possible whElfof codimension 1) governs the illumination, Mot

(of codimension 2). That is unfortunate when one desires 19, ssece self-shadowing enhances

the fidelity of a rendered image.

The remedy is to l&¢ inherit the information (hamel (L) that informs the model of self-shad-
owing. To illuminatep usingV, the reflection terms arising froM are conditioned by the
clamped cosine term arising from the 2-dimensional space

(6) lconditioned = (clamp(=NIL) (Igifruse* Ispecula)

The vector space of larger dimension is consulted in order to modify the illumination of a vector
space of smaller dimension.

lllustration 3 shows various renderings of a sphere in 3-space endowed with a vectdr field
which is tangent to the sphere and aligned in “north-south” directions. Intuitively, this is like a
satin ball used as a Christmas ornament. The satin fibers are the 1-dimensional integral curves
throughV. The material properties are defined by the coefficlgfigient= 0.1,kg = 0.5,kg= 1.0

and an intrinsic colorr( g, b) = (1.0, 0.25, 0.30). In the first imagk, the Kajiya-Hanson model

is applied tov. The rendered curves are just integral curves through the vector field. In the second

13
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image,B, the surface is illuminated using the 2D tangd@ntsnd applying the clamp function.
The third imageC, shows the result of illuminating accordingMoand interpolating the result
over the polygon mesh. The fourth ima@e,shows the result of conditioning the solution of
imageC according to equatiorb).

4.2 Attenuation by a Vector Field

Equation(6) shows how the tangent space can be used to simulate global effects in illuminating
the 1D vector space over The situation can be reversed as well. In the “satin ball” example,
each fibe?V, was contained in the tangent spdggat each poinp. That is, each fiber was
constrained to fit the underlying surface. But that need not be the case. Real, physical fibers may
protrude outward from a surface, partially shadowing the surface from light. It is possible to
simulate this global effect by attenuating the light that rea€he# simple model for attenua-

tion requires the incoming energy to decay exponentially with the distance that it passes through
an absorbing medium of denspy(p being between 0 and 1). The medium is the vector Vield

The light generally passes through the medium twice: once on the way in, and again on its
reflected path back out. In either case, the distance that it passes through the medium is given by

(7 d=h/sina

whereh is the height (perpendicular 1g,) of a fiber ap anda is the angle betweeh, and the
light (entering) or betweefi, and the eye (exiting). The attenuated light therefore has energy

lattengiven by

(8) latten= |source(1'p)d

lllustration 4 shows how conditioning and attenuating the illumination of a mixed-dimensional
object can yield convincing results on a torus with rag# 1.5,r, = 0.75. The fibers have a
material property defined by the coefficiek{gpien= 0.1, kg = 0.9,kspec= 0.1,p =0.02 and an
intrinsic color (r, g, b) = (1.0, 1.0, 1.0) (white). In imafyethe vector fields are individually illu-
minated according to the local model of equatibn [h imageB, the vectors are conditioned
according to equatior6), using the surface normals of the underlying torus. In irGaglee light

at the base of each vector is both conditioned and attenuated. Light at the tip is conditioned only.
Each vector is shaded as a linearly-interpolated segment. The difference lie2bmekhis espe-

cially visible in the lower halves: the fibers blend togethd but are individually visible irC.

5 Running Time

The most complex image (lllustratio®¥contains 409,600 line segments. The fibers are proce-
durally generated from jittered interpolated samples on the 128 mesh of the torus. The
image was rendered on a Silicon Graphics Indig&u-z R4400 MIPS processor, d&bcaches,
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and 128 memory) with Extreme graphics, which draws about 150,000 de-aliased Gouraud-
shaded vectors per second. The image required 2.2 seconds to compute the illumination on the
mesh, 8 seconds to generate the fibers, and 2.5 seconds to draw the fibers. This compares very
favorably to image-order (ray-traced) solutions.

6 Conclusions

The diffuse and specular reflection dé-eanifold inn-space can be derived by appealing to four
basic principles:

« The re-radiated light's intensity varies with the energy delivered by the incident beam;

« The manifold re-radiates isotropically;

« Light travels in paths of locally minimal length; and

» The specular reflection is maximized exactly when the view vector nears the reflection space.
The resulting equations need to be modified in certain conditions. First, a large codimension
generally results in a uniformly-bright object. This effect is ameliorated by exponentiating part of
the diffuse term. The exponent can be found via an averaged integration so that the total contrast
matches that of a surface in 3-space. Second, a codimension-1 vector space can condition the illu-
mination of an associated vector space of smaller dimension. This permits the smaller space to
exhibit self-shadowing. Third, light may be attenuated as it passes through one vector space to
reach another. These effects can combine to create effective images of anisotropic and furry
surfaces in 3-space. They may also be applied to visualize vector fields over manifolds of higher
dimension in large-dimensional spaces.
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Appendix
This section calculates the area-averaged compensated illumination for various combin&tions of
andn. This amounts to solving

K, _ 1 : 1_-23_-1
1 Teomp = D .[stmoa(l" L) dS™ = | =3
LO

for the exponenp = p(k, n). The definite integral of the exponentiated sine can be looked up in a
table: it involves a quotient of gamma functions. Section 3 gives the area element and the volume
element fors? andS®. These quantities have been substituted in the following integrals.

w2 rR20
L2 - 1 irP +1 = 1 -2
|~ “omp 2n4f sirP "1 do do 7 e
8=0 2 U
w2 2m F rg&?’g
1,3 1 irP +2 = Jn _J2
| %eomp= 5 2 J_J sirP @8 do > i
¢=0 6=0 05 O
Op+30
w212 21 r
. . 05 0
|t 4c0mp: i2 4_[ | IS”P +2x sing do de dy = % Dpi4m
X=0¢=06=0 0% o
Op+20 ~P+30 ~Op+20
W21/2 21 r r r
2,4 _ 1 D +2, i +1 _ o0z d_ "0 _ 2
| comp™ o2 AI ISHP X s "o do dpdx = p+30 ~p+40  [p+40  p+2
™ X=0¢=06=0 'z o0ozo TOz0O

To findp(k, n), one merely sets® ”Comp: 1/2 and solves fqr. The numerical solutions are listed
in Table 1.
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